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The unsteady viscous flow induced by a deformable gas bubble approaching or 
receding away from a rigid boundary is investigated for moderate Reynolds 
numbers. The full Navier-Stokes equations were solved by means of a finite-element 
method. The bubble is driven by the buoyancy force. The performance of the 
numerical scheme is displayed for two different configurations of the flow : the bubble 
moves (i) in the half-space bounded by a rigid plate ; (ii) in a spherical container filled 
with viscous fluid. Results are obtained for the evolution of the flow pattern and 
bubble shape for a number of values of Reynolds and Eotvos numbers : 2.2 x lop3 < 
92 < 60, 1 < € < 360. The influence of specific values of 92, € and wall curvature on 
the shape of the deformable interface is thoroughly investigated. Several physical 
effects are included in our theory : dimpling and film formation ; appearance of a 
concavity a t  the rear of the bubble for intermediate Reynolds numbers; and 
elongation of the bubble receding from the wall. Where possible comparisons are 
carried out with other experimental or numerical investigations. The good agreement 
achieved confirms the reliability of the numerical technique developed, of the results 
presented and the conclusions. 

1. Introduction 
The practical importance of studying bubble and drop motions is due to their 

common occurrence in many industrial and biological systems as well as in a number 
of technological processes (e.g. gas-liquid extraction, fluidized beds, flotation, 
fermentation, sedimentation, etc.). For instance, the motion of a bubble towards a 
rigid wall is connected with film drainage problems, being the initial stage of the 
latter. It is particularly important to investigate the motion of a deformable particle 
in a spherical container, which is an essential part of the multiple-drops theory and 
a prerequisite for creating models for the process of fabricating high-compression 
confinement fusion (ICF) targets, see Mok & Kim (1987). These problems represent 
only a few of the reasons stimulating an increasing amount of basic and applied 
studies in this research field. 

There is a large number of theoretical studies dealing with bubbles and drops in 
inviscid flows. Such studies usually take the following general approach. The fluid is 
supposed to be incompressible and irrotational which imply that the flow is a 
potential one. The dynamics of the liquid is described by the simple Laplace 
equation. This is an essential simplification of the problem. Using potential theory 
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we can derive nonlinear equations for the velocity potential a t  the deformable 
interface for the motion of the latter. In  this way Miksis, Vanden-Broeck & Keller 
(1982) studied the steady rise of a bubble in unbounded liquid and accounted for the 
surface-tension effect. A system of integro-differential equations was derived, 
including the normal component of the free-surface force balance, and treated 
numerically. The assumption of inviscid external flow used by these authors leads to 
violation of the tangential component of the boundary condition and reduces the 
practical importance of their results. That paper also contains a review of the 
previous works on the subject. 

The transient behaviour of a cavitation bubble in inviscid liquid near a rigid or free 
surface was studied by Blake, Taib & Doherty (1986, 1987). In  such problems the 
bubble volume changes with time and the evolution of the process is the subject of 
main interest here. The problem is modelled via a system of integral equations and 
solved by the boundary-integral method. A Lagrangian description of the bubble 
surface is employed. These techniques allow the problem to be studied in detail and 
produce many interesting bubble shapes. The influence of gravity is also considered. 
An essential advance achieved by Blake et al. is their treating of the unsteadiness and 
the influence of a rigid or a free interface on the cavitation process. However, the role 
of surface tension has not been studied by them. 

A similar but more sophisticated numerical method was developed by Dom- 
mermuth & Yue (1987) for the same class of problems. They used a regridding 
algorithm to remove the instabilities. This algorithm allows longer time simulations 
than previous ones. They studied numerically the same problem as Blake et al. (1987) 
and reported very good agreement with the experimental measurements. Two 
wave-body interaction problems were also treated. The results confirmed the 
universality and good accuracy of the method. 

It seems that numerical boundary-integral methods are a very promising tool for 
modelling the dynamics of deformable particles in inviscid flows. But they are based 
on the Bernoulli equation for the ambient liquid and are not applicable to viscous 
fluids. 

Theoretical studies of the motion of deformable particles in a viscous liquid have 
been less numerous but still a number of stationary limiting cases have been treated 
in the literature. These are low- or moderate-Reynolds-number flows past a bubble 
or a drop with or without acknowledging the deformability of the particle surface. 

The steady rise of an undeformable gas bubble in incompressible viscous fluid with 
very high Reynolds number (a) and very low Weber number (W)  was investigated 
by Levich (1949). The bubble is assumed to be spherical and the existence of thin 
viscous boundary layers at both sides of the interface is supposed. Using boundary- 
layer theory, Moore (1963) and Chao (1969) improved Levich's results for bubbles 
and drops, respectively. El Sawi (1974) extended Moore's analysis and studied the 
interaction between the boundary layer and the bubble shape. 

The limiting case of very small Reynolds numbers is often treated as well. Under 
this restriction Taylor & Acrivos (1964) developed an asymptotic expansion for the 
deformation of a drop falling through another unbounded liquid. They proved that 
under the Stokes approximation the drop will remain spherical for any Weber 
number. 

Perhaps the first systematic numerical computations of steady viscous flow past 
a fixed spherical gas bubble were reported for 0.1 < B? < 200 by Bradston & Keller 
(1975). They obtained good agreement for the drag coefficient with Moore's (1963) 
asymptotic theory for B = 40 and with the small-Reynolds-number asymptotic 
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theory for W < 1. The method of series truncation is used to reduce the problem to 
a nonlinear two-point boundary problem, solved by a finite-difference procedure. An 
essential restriction used in this work is that the bubble is assumed to be spherical. 

Recently a couple of studies have appeared treating the more difficult case of 
intermediate Reynolds numbers and comparatively high Weber numbers. In such 
problems full steady NavierStokes equations have to be treated to describe the 
dynamics of the ambient fluid. Ryskin & Leal (1984) used a finite-difference method 
combined with numerical grid generation and obtained results for the steady rise of 
a deformable gas bubble in unbounded liquid for 1 < W < 200 and W < 20. Christov 
& Volkov (1985) investigated the same problem in approximately the same ranges of 
the parameters but using a simple scaling of the independent coordinate in the frame 
of the finite-difference splitting technique. Both cited papers consider only a 
stationary single bubble in unbounded liquid. The same problem was studied 
experimentally by Bhaga & Weber (1981) and Hnat & Buckmaster (1976). They 
provided data widely used for the verification of the theories. 

The interaction of a deformable particle with an interface is less widely studied. 
Basically, such problems are transient and also the domain occupied by the liquid 
changes, not only owing to the interface deformability but also to the particle 
motion. To overcome these difficulties in the limiting case of low Reynolds numbers 
the quasi-steady approach was employed. In this way, under the additional 
assumption of the law deformability of the interface, the slow motion of a drop with 
fixed velocity towards a plate was considered by Chervenivanova & Zapryanov 
(1985). First they solved analytically Stokes equations around an undeformed 
particle and then determined the shape of the interface satisfying the normal stress 
balance over it. But the resulting flow does not correspond to the shape evaluated 
and hence the results are legitimate only for the case of small deformations. 

In those works the transient effects are not taken into account. Such effects are 
particularly important when a particle is started from rest or when it approaches an 
interface. Some film-thinning problems could be considered as limiting cases of the 
interaction of a bubble or a drop with an interface for large times and small distances 
between the particle and the wall. The usage of the full unsteady NavierStokes 
equations with free boundary conditions seems to be relevant for the first stage of the 
process when the standard film-theory conditions are not satisfied. So the interaction 
of a deformable particle with an interface is connected with film problems. 

A theoretical approach to the film-thinning problem was proposed by Reed, Leidi 
& Hartland (1980). They proposed a mathematical model for the final (drainage) 
stage of the approach of a drop to a horizontal plate, assuming that the standard 
thin-film-theory assumptions are satisfied and that the initial thickness of the film is 
constant. This model is not applicable, however, for relatively large distances 
between the particle and the plate ; here the deformable particle-interface interaction 
model could be used. The results of experiments contained in Reed et al. and in the 
works of Hartland (1967) and Mackay & Masson (1963) could be used for qualitative 
and quantitative verification of such theories for the inception of film formation. 

Another class of transient problems is the motion of a deformable drop in confined 
fluid. The dynamics of a bubble in a container is an example of such situation. The 
case of a spherical container has been studied theoretically by several authors. Mok 
& Kim (1987) considered this problem with the approximation of low Reynolds and 
low Prandtl numbers, assuming that the bubble is spherical, concentric with the 
container and moving with its terminal velocity. They also took into account the 
vertical temperature gradient and the gravity force. The method employed is an 
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analytical one and is based on series expansions in terms of Gegenbauer polynomials 
for the velocity and Legendre polynomials for the temperature. A slightly deformable 
bubble moving with a fixed velocity in a spherical container of liquid was considered 
by Chervenivanova & Zapryanov (1987) with a low-Reynolds-number approximation 
(see also references therein). They employed the same method as in their work 
previously mentioned. In these works the influence of the ratio of the bubble and the 
container diameters (it represents the curvature of the wall too) and the finite size of 
the container were considered. Brunn & Roden (1985) obtained an approximation, 
first-order in Reynolds number, for a similar problem in connection with type-A 
multiple drops, once again under the low-Reynolds-number assumption, In  this 
study the surface force balance conditions are imposed on an undeformable spherical 
fluid interface rather than the non-slip conditions a t  the rigid container wall. 

As far as we know the hydrodynamical interaction of deformable particles with a 
flat or spherical rigid wall has not yet been investigated for intermediate Reynolds 
and Weber numbers. This is an interesting nonlinear physical problem of 
fundamental importance whose solution is crucial for providing the film-thinning 
theory with more consistent initial conditions and for defining the time moment after 
which this theory can be applied. 

In  this paper we develop a numerical technique for evaluating the non-steady 
hydrodynamical interaction of a bubble with a rigid wall. We consider the following 
two basic problems: (i) the motion of a bubble near a plane rigid interface; (ii) the 
motion of a bubble in a spherical rigid container. 

In our investigations the driving force is the buoyancy. At the initial moment the 
bubble is assumed to be a t  rest, its shape spherical and the ambient liquid quiescent. 
The fluid in the bubble is assumed to  be ideal, incompressible and a t  constant 
pressure. All nonlinear terms are retained and large deformations of the interface are 
allowed. On the bubble interface the surface tension is taken into account. 

Our theory could also be applied to drops, if the viscosity of the fluid inside is 
negligible and the motion of the fluid in the drop can be ignored. 

We obtain the bubble shape, velocity and flow pattern around it as functions of 
time. The temporal deformation of the bubble with time and the distance between 
the bubble and the wall are also calculated. The influence of inertial and viscous 
forces (represented by the Reynolds number), surface-tension and gravity forces 
(represented by the Eotvos number, E ) ,  the dimensionless starting distance from the 
wall and the wall curvature (represented by its radius) are studied. 

Various physical effects are observed in our calculations: dimpling and film 
formation; appearance of a concavity in the rear part of the bubble for intermediate 
Reynolds numbers; and elongation of a bubble receding from a wall. Two new effects 
are also studied. The first is the formation of a slight dimpling ring, instead of the 
usual dimple, on the spherical film between the bubble surface and the container. The 
second is the existence of a surface wave at, the rear portion of the bubble when the 
latter recedes from the container wall. This effect is observed only for relatively large 
Reynolds and intermediate EBtvos numbers. 

Our theory yields some information about the inception of film and dimple 
formation. However, it cannot be applied directly to the study of thin-film problems, 
because in this case the efficiency of the numerical method is too low. Our results just 
give more precise initial conditions for film-drainage theories. 

PreIiminary notes about the results presented are published in Minev, Shopov & 
Zapryanov (1988), Bazhlekov, Shopov & Zapryanov (1989) and Shopov et al. 
(1989 b ) .  
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In  the next section we describe the mathematical model. This is followed by some 
information about the numerical method used. I ts  complete description will be 
published separately in Shopov, Minev & Bazhlekov (1990). In  the following section 
($4) some test problems and comparisons to  theoretical and experimental works are 
presented to demonstrate the accuracy of the numerical modelling. Section 5 begins 
with an overall description of the numerical experiments. The results for the 
temporal evolution of the bubble shape, velocity field and instantaneous streamlines 
are shown and interpreted. Parametrical investigations are also presented. The final 
section summarizes the main conclusions and identifies some fields of future 
investigations. 

2. Formulation of the problems and mathematical model 
We consider the following two problems: 
(i) the rise of a deformable gas bubble towards or away from a plane rigid wall in 

unbounded liquid a t  moderate Reynolds numbers ; 
(ii) the motion of a gas bubble in a spherical container filled with viscous liquid for 

moderate values of the Reynolds number. 
In  both problems the bubble and the liquid are initially motionless and the motion 

is set up by the buoyancy. 
The geometry of the problems is illustrated on figure 1. Note that generally 

speaking the first problem could be considered as a limiting case of the second one 
when the radius of the container tends to infinity. 

The fluid in the bubble is assumed to be incompressible with density po = 0, 
viscosity p, = 0, and the pressure inside, po( t ) ,  does not depend on the spatial 
coordinates. This assumption is valid for an ideal gas if the pressure and temperature 
differences in the ambient liquid are not too large. Physically this means that the 
dynamics of the fluid in the bubble is ignored. The ambient liquid is homogenous, 
incompressible and Newtonian, with constant physical properties ; dynamic viscosity 
p and density p. The coefficient of surface tension of the interface between the gas 
and the liquid is u. The pressure a t  infinity is assumed to be constant. Initially the 
bubble and ambient liquid are at rest and the bubble is spherical. 

Our model can also be applied to the more general case when the density of the 
fluid in the drop is p = const. Then the pressure inside the drop is 

Pi = Po+Pog(zo--Z), 20 = 4 B ) .  (2.1) 

This assumption is valid for an ideal liquid if the deformation of the interface is 
sufficiently slow. Thus, a drop with negligible viscosity can be also treated in this 
manner. 

The diameter 21 of an equivalent spherical bubble (with the same volume) is 
chosen to be the reference length and the so-called Stokes terminal velocity U, is 
chosen to  be the characteristic velocity : 

where V i s  the volume of the bubble, h = (p-p,)/p is the ratio of the difference in the 
densities of the liquid and the gas to  the density of the liquid, g is the gravitational 
acceleration. 
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FIQURE 1. Geometry used in the analysis of the bubble motion in a liquid : (a) near a rigid 
interface ; (6) in a spherical container, 

The numerical results are presented in terms of Reynolds and Eotvos numbers: 

w = p(2Z)U0/p, 8 = q(21)2ph/(T. (2.3) 

Thus W determines the relative importance of the inertial to the viscous force and 

The commonly used Morton, Weber and Froude numbers 
6 of the gravitation force to surface tension. 

A = gp4h/pd, w = z p q / g ,  9 = !q / (qZA) ,  
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are expressed through 92 and I for this choice of reference velocity: 

A = 1 8 - 2 8 3 / 9 2 ,  77- = 18-198, 9 = 18-19?. (2.5) 

The number 18 appears due to the coefficient Q in the reference Stokes velocity, cf. 

Respectively, the capillary number and the drag coefficient read 
(2.2). 

The problem depends on two geometrical parameters : 

y = H/21, e = 2R/21, 12.7 1 
where H is the initial distance from the bubble centre to the rigid boundary, R is the 
radius of the container (for Problem (i) R = 00).  The first, y ,  represents the 
dimensionless starting distance and determines the initial location of the bubble. The 
second one expresses the ratio of the diameter of the container to the initial diameter 
of the bubble and determines the relative importance of the curvature of the wall. 

Provided that the plate is horizontal and the Reynolds number is not too high 
there is no asymmetry and the flow is two-dimensional. So one can employ the 
axisymmetric Navier-Stokes equations : 

Dv/Dt = - V p + V . T + F ,  

v-u = 0, 

T = (1/R) D ; D = 0.5(Vv + VuT) 

whereu= (w,,w,)= (U,V),x=(r,z),F=(0,-1/9),p=p-pog(zo-z),andpisthe 
pressure. 

The standard no-slip conditions are imposed on the rigid wall and a t  infinity: 

u = 0. (2.11) 

(2.12) 

The symmetry conditions with respect to the line r = 0 have the form 

4 = - w A  - r ,  4, VAT, 4 = vz( - r ,  4, p(r ,  4 = p(  - r ,  4. 
We need these conditions to close the boundary-value problem in the half-domain 
r > 0. 

The standard boundary condition at the free surface expresses the balance of the 
normal stresses : 

T .  n + - p) n - W-'( 1 / R l  + 1 /&) n = 0, (2.13) 

where n is unit outward normal to the free surface ; R ,  and R, are the principle radii 
of curvature of the interface (see e.g. Keunings (1986) and references therein). 

The free surface satisfies the kinematic condition 

DS/D~ = aspt + V. vs = 0, (2.14) 

The initial conditions for a quiescent liquid and a spherical bubble at rest (see 
where S(r, z,  t )  = 0 is the equation of the free surface. 

(2.15) 
figures 1 and 2) are 

ult-o = O,fiI,-, = so. 



248 P .  J .  Shopov, P. D.  Minev, I .  B. Baxhlekov and 2. D .  Zapryanov 

Z t 

FIQURE 2. Deformed initial surface So of the bubble and its final stable shape S .  

3. Numerical method 
At present there exists a variety of numerical methods for solving unsteady 

Navier-Stokes equations when free boundaries are present. They can be divided into 
two classes : (i) finite-difference methods in (0, $) variables - Christov & Volkov 
(1985), Kang & Leal (1987), Shokoohi & Elrod (1987); (ii) finite-element methods 
(FEM) in primitive variables (velocity and pressure) (see Keunings 1986 and 
references therein). Both approaches have their own advantages and disadvantages. 

FEM algorithms are very natural and have proven their good performance in 
solving Navier-Stokes equations even in the case of transition to a turbulent regime 
(Fortin, Fortin & Gervais 1987 ; Jackson 1987). Transient free-surface entrainment 
and circulation problems (Prederiksen & Watts 1981) as well as jet stability problems 
(Keunings 1986) can also be treated by FEM. The cited methods are of 
Lagrangian-Eulerian type. 

Our numerical method is conceptually akin to these methods. The general idea is 
quite an old one (see Connor & Brebbia 1977 and references therein) and is a type of 
Lagrangian approach. 

Here we shall not describe the algorithm in detail (see Shopov 1985, 1988; Shopov 
& Minev 1986). The complete account of the development of the technique will be 
published by Shopov et al. (1990). Here we shall just point out its main differences 
from the techniques of Frederiksen & Watts (1981) and Keunings (1986). 

In  the present paper the Lagrangian approach is used, because i t  has significantly 
lower numerical diffusion errors than Eulerian and Lagrangian-Eulerian ones - see 
Cloutman (1987) and references therein. The mesh cells represent finite volumes of 
the liquid which move with the flow and deform until they stretch intolerably, when 
the grid is redefined. Usually only a couple of grid redefinitions appear to be 
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necessary, i.e. the computations are almost Lagrangian. Our method possesses all the 
standard advantages of the Lagrangian method : (i) natural tracking of discrete fluid 
volumes and the free-surface boundary; (ii) a clear physical meaning of the discrete 
mathematical model ; (iii) natural and simplified treatment of the convection. 

Our algorithm is provided with a general procedure for grid redefinition, which can 
even change the number of finite elements as well as the mesh topology (Shopov, 
Minev & Bazhlekov 1989~) .  The moment when regridding is needed is determined 
automatically. The new mesh is introduced by means of a standard grid generator 
(Shopov (1985). The velocity field is defined in the whole region by its values on the 
old mesh and hence a t  the new nodes too. Then the velocity at new nodes is 
evaluated. The spatial positions of the mesh points are not predetermined by the 
position of the free surface, which allows us to change the density of the grid in 
different regions during the computations. 

The integration of the kinematic condition (2.7) is accurately performed without 
introducing additional unknowns for the position of the deformable interface. So we 
can use a smaller number of unknowns than is usually done in an FEM. A predictor- 
corrector method is used to ensure accuracy when calculating the position of the free 
surface. 

Here we should mention that in the present work we employ a more sophisticated 
approximation (Shopov & Minev 1986) of the free-surface and surface-tension 
operator than the standard one (see e.g. Keunings 1986 and references therein). It is 
introduced because the classical one does not preserve the spherical shape ofa  bubble 
at rest in unbounded liquid in weightlessness. It also provides the means for direct 
control of the smoothness of the interface. 

We incorporate in our numerical scheme an optional spline procedure for filtering 
the error in the computed values of the velocity on the free boundary. It should be 
stressed here that the filtering is not a necessary condition for the stability of the 
algorithm proposed and numerical results in some cases have been obtained without 
its use. What makes the difference, however, is that  the convergence is radically 
improved with the filtering and as a result the required computational time is 
reduced (Shopov et al. 1989a). 

Based on the standard idea of predictions-corrections (see e.g. Gresho, Lee & Sani 
1980), Shopov (1988) developed a practical criterion for automatic adjustment of the 
time spacing in order to optimize the required computational time and this is used 
in the present work. Another important feature of the algorithm is the automatic 
control on the accuracy of the free-surface computation, see also 35.1. 

Let us note that the FEM approximation proposed here reduces to a positive 
definite system of linear equations (Shopov 1984). In  this instance our technique is 
similar to  a divergence-free one - see e.g. Cuvelier, Segal & Steenhoven (1986). 

We use isoparametric finite elements of second-order accuracy with biquadratic 
continuous velocity and linear discontinuous pressure. These finite elements possesses 
excellent properties for incompressible flows (Fortin et al. 1987 ; Jackson 1987 ; Cliffe 
& Lever 1986) and seem to be the best choice for the axisymmetric case, when the 
non-conforming triangles do not satisfy the path test. 

We do not claim, of course, that all of the above-described differences are 
necessarily advantages in each specific case. Only a detailed comparison between the 
methods can answer the question which of them is better, for a specific problem and 
on a particular computer : different numerical methods possess their own advantages 
for the class of problems for which they are constructed. I n  this instance, our 
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technique is particularly suited for numerical solution of free-surface fluid problems. 
Based on it a rather general code, NEFIS, is developed, by which all computations 

presented are done. 
As usual, the accuracy of the numerical method and the code have been verified 

on various test problems. Several comparisons related to undeformable and 
deformable particles are presented in the next section, which confirm the good 
accuracy of the method. Other examples are presented in Shopov et al. (1990). 

It is difficult to assess a priori the final accuracy of the numerical methods. It 
depends'not only on the quality and the conservation properties of the method but 
also on the properties of the unknown solution, the density of the grid and the 
maximal time-integration step. I n  our case the influence of these parameters is 
partially included in the gross measure of the total accuracy of the free-surface 
computation e (here e = 2.5% or less, see §5.1), which gives an idea of the total 
precision of the results. As always with numerical methods, comparisons with other 
analytical, numerical and experimental solutions as well as information from the own 
numerical experiments and the self-consistency of the data gives a feeling for the real 
accuracy of the results. Existing experience of similar problems also plays an 
important role. 

On the grounds of these criteria we assess the accuracy of results presented to be 
not worse than 5%. In  many cases the accuracy is much better. I n  our opinion the 
qualitative behaviour of the predicted shapes is always very reliable, even if the 
observed effects are quantitatively smaller than the upper error limit. This is 
connected with the good conservation properties of this method (Shopov 1989) and 
with the clear physical meaning of the discrete model. The only assumptions used are 
the finite-element approximation of small liquid volumes and discrete time. 

With the increase of the usage of numerical methods in free-surface fluid dynamics 
the task of establishing a set of standard test problems arises. This seems to be more 
or less settled only for laminar flow in fixed-domain, steady, simply connected cases, 
related to the investigations of a great number of authors - see e.g. Thomasset (1981) 
and Pirronneau (1984) and the references therein. 

In  this connection perhaps the steady motion of a deformable particle under 
buoyancy could be proposed as a standard test for the stationary case. For the 
unsteady case, in unbounded liquid, it could be the relaxation of the initially 
disturbed bubble (see §4), the deformation of a bubble in straining flow or under 
gravity and antigravity (see Kang & Leal 1987 and $4). 

4. Test and comparisons 
All numerical experiments are performed employing standard isoparametric 9- 

node velocity, linear discontinuous pressure finite elements, see e.g. Cuvelier et al. 
(1986), Fortin et al. (1987) and figure 4. 

4.1. Slow motion of a rigid sphere 
Consider the classical problem - slow motion of a rigid sphere with constant velocity 
in infinite viscous fluid - see Happel & Brenner (1965). It is reduced to the solution 
of the steady Stokes equations in fixed domain. 

The problem is solved on several meshes with different numbers of nodes. Here we 
shall give only the result for a rather coarse mesh with four isoparametric finite 
elements, non-uniform in the radial direction in the ratio 1 : 4  and uniform in the 
other direction. Infinity is placed at 5 radii from the sphere. The problem is treated 
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FIQURE 3. Numerical solution for initially disturbed bubble; W = 1, d = 0.1. 

in a quarter of the whole domain using two types of symmetry conditions. The 
maximum difference between the exact solution and numerical one in the mesh 
points is ]ueXact - unumericallC = 0.0163 for the velocity and for the stream functions 
I Yexact - YnumericallC = 0.0027, where I - I c  denotes the maximum norm. This accuracy 
is more than satisfactory for such a grid. 

This simple problem is chosen as a test for the following reasons: (i) this exact 
solution of a flow past a particle is used in many physical applications ; (ii) it gives 
an idea of what kind of meshes could be used; (iii) the time integration of the 
unsteady Navier-Stokes equations by Lagrangian-type methods is reduced to the 
solution of the Stokes equation at every time step. 

There are many differences between this situation and the transient, free-surface 
case. 

4.2. Time relaxation of a n  initially disturbed bubble 

The part of the technique responsible for calculating the bubble shape is tested 
separately. For this purpose the gravity is ‘switched off ’, taking 9-l = 0. The stable 
shape of a unit bubble in quiescent, unbounded liquid is spherical - see Batchelor 
(1967). To test our algorithm on this well-known fact we disturb a spherical bubble 
shape such shown on figure 2 and follow its time evolution. 

We choose as a characteristic length the radius of the undeformed spherical bubble 
1 and as a characteristic time the surface-tension relaxation time ,ul/a. So the fluid 
velocity is scaled by g/,u and the pressure by all. 

The dimensionless amplitude of the disturbance is q = 0.1, and R = 1. The 
maximum deviation from the stable shape is achieved at  points A (‘a hollow ’) and 
B (‘a ditch’). We take a non-smooth initial shape to see how the non-physical edges 
and tops are smoothed down. 

The temporal evolution of the deviation x(A, co)-z(A,  t )  at  the point A from its 
final stable position and the velocity u(A, t )  is shown on figure 3 for one particular 
case. This figure shows that the stable spherical shape is obtained after a time 
inter v a1 . 

9 FLM 219 
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FIGURE 4. Example of a mesh used for modelling the steady rise of a bubble in unbounded 
liquid. 

FIGURE 5. Comparison of numerical bubble shape with experiments (---) of Bhaga & Weber 
(1981) at 9 = 13.3, d = 116, .M = 5.51. 

4.3. Steady motion of a deformable bubble 
Next we do the following simple test. A spherical bubble at 5i? = 0.0044 and d = 0.2; 
W = 0.00005 moves owing to  the buoyancy in unbounded liquid. The definition of 
the governing parameters is as described in $2. No deformation occurs, which is in 
agreement with the result of Taylor & Acrivos (1964) for 9 << 1. 

The steady motion of a deformable bubble in unbounded liquid has been studied 
experimentally by Bhaga & Weber (1981), Hnat & Buckmaster (1976) and 
numerically by Ryskin & Leal (1984), Christov & Volkov (1985). The stationary 
problem can be considered as a particular case of the transient one and hence the 
latter studies could be used for testing the numerical technique. Our method is 
developed especially for unsteady problems. A steady-state problem can be solved as 
the limit case ( t  - CO) although this is an expensive procedure. Of course, special and 
more efficient variants of the method can be constructed for stationary problems. 

In  $4.3 the reference velocity and length are as chosen by Bhaga & Weber (1981), 
i.e. with respect to real terminal velocity and the volume-equivalent diameter. A 
model grid used for comparison is shown on figure 4. Regridding is applied when the 
particle moves far from the centre of the grid or the mesh becomes distorted. The 
usage of more grid points will yield better accuracy. The results presented show that 
even on such comparatively sparse meshes the accuracy is satisfactory. 

We compare with two shapes experimentally obtained by Bhaga & Weber (1981). 
At 5i? = 0.078, d = 8.67, dt? = 711 the bubble is practically spherical. The numerical 
experiment shows deviation of less than 1 %  from the spherical shape. This is less 
than the accuracy of the experimental data. The comparison a t  large deformability 
and intermediate Reynolds number is shown on figure 5. 

Bhaga & Weber (1981) have calculated the value of the separation angle as 8 = 

100" for the experiment depicted on figure 5 .  The value of 8 in our computational 
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FIGURE 6. Comparison of our result at 92 = 19.4, W = 15.3 with the experiment (----) of Hnat & 
Buckmaster (1976) at W = 19.4, W = 15.3 (left-hand side) and with the theory (----) of Ryskin 
& Leal (1984) at W = 20, W = 15 (right-hand side). 

FIGURE 7 .  Comparison with the theory of Christov & Volkov (1985) (-) at (a) W = 20, 
W = 7.64, A = 6.83 x (b )  W = 60, W = 5.04, A = 9.3 x lo-'. 

result is # = 98'. This also confirms the good agreement of our solution with the 
experimental data. 

Ryskin & Leal (1984) compared their numerical solution for the steady rise of a 
bubble in viscous, unbounded liquid a t  9? = 20, W = 15 with the experiment of Hnat 
& Buckmaster (1976) a t  92 = 19.4, W = 15.3. Our result for the bubble shape is 
depicted on figure 6 for the same situation as in the experiment. The eventual 
concavity a t  the rear is invisible on the experimental photograph. It explains the 
difference with the numerical data. 

Christov & Volkov (1985) have also studied this problem. The comparisons with 
their results at 9-2 = 20, W = 7.64, A? = 6.83 x and W = 60, W = 5.04, 4 = 
9.3 x lop6 are shown on figure 7 (a ,  b ) .  

Our numerical method is constructed specially for comparatively large Eotvos and 
Weber numbers. The result presented on figures 6 and 7 shows that i t  works better 
for large values of them than the numerical methods of Ryskin & Leal and Christov 
& Volkov. The large Reynolds numbers required small time steps and dense grids. So 
we restrict our comparisons to W = 60. Cliffe & Lever (1986) considered 92 = 40 as a 
typical value for intermediate Reynolds numbers. 

These test problems and comparisons give us confidence in the accuracy of the 
interface shape, obtained by our numerical technique. 

5. Numerical results 
In this section we present results concerning the bubble shape, its deformation, 

velocity, instantaneous streamlines and the thickness of the liquid layer between the 
bubble and the wall that are predicted for the transient motion of a bubble in the 
presence of a rigid boundary. 

Problems (i) and (ii) are solved for various values of the parameters. Two distinct 
9.2 
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situations are considered : when the bubble approaches the wall and when it recedes 
away from the wall. The Reynolds number varies from 4 x to 120, the Eotvos 
number from 1 to  360. The initial distances are taken from the interval 0.55 < d < 
1 (y=O.5 corresponds to the case when the bubble touches the wall), and the 
diameter of the container is allowed to vary from 2 up to  cr;), the latter corresponding 
to the case of a planar wall. At the initial moment of time the bubble is at rest and 
the liquid is quiescent. 

Bubble velocity u(C) is defined as the velocity a t  the bubble middle point C defined 
as C = 0.5 [x(A)+z(B)] and hence u(C) = 0.5 [u(A)+u(B)] .  This definition as a rule 
serves reasonably well but differs from its usual meaning at the film stage, where 
more weight should be given to  the velocity at the dimpling zone. 

When the bubble approaches the rigid wall, a thin layer is formed, which can be 
considered as the first stage of film formation in the drainage process. In  this case the 
velocity u(A) = u(A,t)  of the front point A of the bubble can be considered as a 
measure for the film thinning velocity, and the distance d = d ( t )  from that point to 
the wall (see figure 1) as the dimensionless film thickness,scaled with the volume- 
equivalent radius of the bubble. Since the thickness varies a t  different points we shall 
also use the notation d ( x ,  t )  (note that d ( t )  = d(0, t ) .  In film-thinning theory the film 
thickness d(x, t )  ( A  = d(0, t ) )  is scaled with the film length rf = r f ( t )  

A(x ,  t )  = d ( Z ,  t ) / r f ( t ) .  (5.1) 

The last quantity is used only for large times when the film is already formed. 
We have also studied the two different two-dimensional plane-parallel versions of 

problems (i) and (ii). The first is the problem of motion of a very long bubble near 
a plate, and the second its motion near a tube wall. These are models for quasi-two- 
dimensional experiments (see e.g. Reed et al. 1980). The agreement with those 
experiments is qualitatively good but we do not present the results since they go 
beyond the scope of the present work. 

In the following subsections we consider several examples of bubble motion in the 
presence of a rigid interface and the influence of the governing parameters 
corresponding to  four physical factors is studied. 

The dimensionless height h and width w of the bubble are often measured in the 
experiments and it is instructive to compare our findings for those two quantities 
with the available data. We define h = z(B) -z(A) (see figure 1). The aspect ratio w / h  
is considered as a measure of the average deformation. 

5.1. Overalt description of the numerical experiments 

Triangulation is introduced for half of the real domain, see figures 1 and 8. We choose 
the maximal value of the time increment At,,, from the interval [O. 1,0.5] according 
to the requirements of the particular case under consideration. During the 
calculations the algorithm can automatically reduce the time increment in order to 
control the accuracy of calculation of the free surface or of its smoothness. The 
procedure for automatic time increment selection is that  we require, at each time 
step, the following criterion to be satisfied : 

IS”-ScIc < € A t  

(for the definition of I . I c  see $4). I n  other words, the maximum of the difference 
between the predicted position of the free-boundary and its corrected position is to 
be less than a given accuracy E multiplied by the time step. The definitions of S P  and 
Sc are given in Shopov (1988). The presence of At in (5 .2)  ensures that the error 
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FIGURE 8. Example of a distorted mesh and a new one after regridding. 

cannot increase. The gross measure 8 for the accuracy is usually taken to  be about 
2.5% of the unit length. Satisfying (5.2) means that the specific error is essentially 
smaller for a particular time step. 

The maximum value a of the angle between the normals at the junction points of 
the finite-element sides on the free boundary is used as the measure for the 
smoothness of the free surface. The difference approximation of the interface consists 
always of mesh nodes, because the numerical method is of Lagrangian type. Since the 
variable a is equal to zero for a real smooth surface we impose the following condition 
on i t :  

a: < E. 

This gives direct control of the smoothness of the free surface. The value is 
measured in radians and is taken in our calculations not to exceed 0.22, i.e. about 10". 
Such non-smoothness is so small that  it is not visible even when the free surface is 
shown graphically. 

If at a certain time stage the conditions (5.2) or (5.3) are not satisfied, At is reduced 
according to them and the time step is repeated. If (5.1) can be satisfied when, in 
place of 6,  $ is employed then At is increased (see Shopov 1988 for details). This 
procedure of time-increment management turned out to give values for At from lop5 
up to At,,, (e.g. Atmrtx = 0.2) depending on the particular stage of evolution of the 
flow. 

Remark 1. The time integration almost stops if At remains steadily low. Such 
situation occurs if the free surface becomes numerically unstable or an error exists in 
the program code or data. The numerical method automatically determines the 
moment when it can give good results. 

So the exactness of the free-surface evaluation is carefully controlled. We have 
performed many numerical experiments with different numbers of finite elements or 
different choices of the time-integration step, including At = const. The results do not 
differ essentially, and we shall not present particular data on this here because 
several tests and comparisons are given in $4, which show the accuracy of the 
method. 

I n  our method the mesh points represent the fluid particles and move over time. 
So the finite elements represent liquid volumes and also become distorted after a 

(5.3) 
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time. The finite-element’s shape is controlled automatically in the standard way for 
the FEM. The calculations stop when the value of the Jacobian for one finite element 
falls below lop2 and grid redefinition is performed - see Shopov et al. ( 1 9 8 9 ~ ) .  An 
example of such a situation is pictured on figure 8 for a coarse mesh. 

Hence in general we can follow the shape evolution in time without any 
restrictions. But in practice one situation exists for which our method becomes very 
inefficient and time integration nearly stops - see Remark 1 .  This takes place when 
the film zone between the gas-liquid interface and the wall is formed and the motion 
of the bubble itself nearly stops. The velocities were of order lop3, so we expected 
that the pattern was connected with the choice of the reference velocity. We 
diminished the reference velocity (e.g. loT3 times) and the velocities became of order 
one. But the time step was also decreased (measured with respect to the new 
reference time, of course, see $ 2 )  and the displacement remained unchanged. Hence 
in this way we have achieved nothing but an additional proof that the numerical 
results do not depend of the choice of the reference velocity. 

This situation seems to us to be natural. From a mathematical point of view the 
error of the numerical method is proportional to the diameter h,,, of the largest 
finite element in the computational domain - see e.g. Cuvelier et al. (1986). The 
thickness of the film zone is about two orders lower than the diameter of the bubble 
and hence much smaller than h,,,. Therefore the total error of the numerical method 
begins to be considerable in the film zone and spurious instability of the free surface 
takes place. We come to the situation described in Remark 1 and we cannot obtain 
results for a greater time. 

From the physical point of view, the main process now takes place in the film zone, 
whose area is negligibly small with respect to the area occupied by the bubble. So the 
global problem consists of two parts in this case : a small-scale film thinning process 
and a large-scale problem of the bubble motion. To describe the processes well we 
need to consider the first one with respect to its reference length, the film thickness 
1, -% 1 ,  and the second with respect to the bubble diameter 1. Perhaps the best way 
to study the next stage of the process is to  use a film-thinning model for the film part 
and to couple it with our model for the bubble and the ambient liquid. This could be 
an interesting subject for further studies. On the other hand, the existing theories for 
the film stage seem to yield satisfactory results (see e.g. Reed et al. 1980). So it  is not 
very obvious whether i t  is worth doing. 

Therefore, i t  is clear that our theory describes the process of the bubble approach 
to a rigid wall up to the moment when the film thickness becomes comparatively 
small. In  practice this moment is automatically indicated by the numerical method 
as previously described. 

5.2.  Bubble approaching a rigid wall 

First we consider gas bubbles in two different real liquids - glycerin (figure 9) and 
aqueous sugar solution (figure 10). In the second case the gas and liquid are the same 
as those used by Bhaga & Weber (1981), see their figure 2 ( b ) .  The only difference is 
that our results are obtained for a bubble with equivalent diameter twice as large as 
Bhaga & Weber. 

The dimpling phenomenon is observed in both experiments for large times. A 
lubrication layer is formed between the wall and the gas-liquid interface. The viscous 
fluid is ‘trapped’ between the bubble and the rigid boundary and causes the 
dimpling, because the pressure drop is insufficient to overcome the viscous stress in 
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FIGURE 9. Time development of the shape of an air bubble with diametere 20 mm in g-;cerin, 
W = 0.396, Q = 19.48, y = 0.75: (a) e = co ; ( b )  e = 3. 

FIGURE 10. Time development of the shape of an air bubble in aqueous sugar solution a t  
W = 1.24, d = 70.8, y = 0.75. 
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FIGURE 11. Instantaneous streamlines for a bubble approaching the container wall at 3 = 22.2, 
6 = 80, y = 0.8, t = 0.18. 

the layer. This is evident on the axis in figures 9(a), 10, 12(a) and a t  a non-axial 
location in figure 13(b). 

In  figures 9, 12(c) and 13(a) the bubble velocity is seen to  be smaller in the 
container (problem ii) than for the flow bounded by a plate (problem i) when the 
remaining conditions and governing parameters are the same. This is natural and is 
attributed to the influence of the container. For the same moment in time the 
thickness of the liquid layer that is formed between the bubble and the wall is larger 
for the flow in the container than for the case when the flow is bounded by a plate. 
This is no surprise since the non-slipping a t  the container wall results in a larger 
resistance to the outflow of the liquid from the near-wall zone than in the plate case 
e = 00. In  fact the hydrodynamical interaction of a deformable bubble with a 
container wall is stronger than with a plane wall. 

The instantaneous pattern of the streamlines is presented in figure 11 and 
illustrates the outflow from the film zone and the rise of the bubble rear. 

It is interesting to give a feeling for the influence of the four governing parameters 
on the properties of the scheme and algorithm as well as on the results obtained. In 
what follows this is done in detail through varying one of the parameters with the 
others being held fixed. 

I n  figure 12 results are shown for the shape of a bubble rising towards a rigid wall 
(three governing parameters) for fixed Reynolds number W = 10 and starting 
distance y = 0.75 and different Eotvos numbers. It is interesting to note the 
occurrence of an indentation of the free surface at  the rear of the bubble for 
comparatively large Eotvos number -figures 12(c) and 13(a). This effect is a 
consequence of the interplay between the inertia of the liquid behind the bubble and 
the deceleration of the particle’s motion due to  the presence of the wall. At the same 
moment the pressure maximum is located at the bubble rear. The liquid a t  the 
bubble rear is accelerated due to the particle’s motion (under the buoyancy, in our 
case). It pushes the interface and penetrates into the particle, if the surface tension 
is not enough strong to stop it. This phenomenon could be referred as a jet formation, 
by analogy to a similar effect in a different problem - collapse o f a  vapour cavity near 
a plate, see Blake et al. (1986). 

This effect is absent for comparatively small Reynolds and Eotvos numbers 
(figures 9 and 12a) and is evident for large ones (figures 13a and 15). I ts  amplitude 
is small for modest Reynolds and large Eotvos numbers (figures 10 and 12c) and in 
this case it could be considered as a bubble rear-flattening effect. In this connection 
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FIQIJRE 12. Gas bubble moving towards a plate for fixed W = 10, 
of the Eotvos number: (a) 8 = 7.2; ( b )  8 = 18; 

y = 0.75 and different values 
(c )  8 = 36. 

we could mention that the curvature at the particle’s rear diminishes in time for 
small Reynolds numbers (figure 9), but this is not so for larger ones (figure 12), 
although in both cases the indentation is absent. 

Perhaps this jet could split the bubble if the surface tension and the viscosity were 
small and the particle’s velocity were great a t  the moment of the start of the 
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interaction with the wall. But we have not observed i t  in our numerical calculations. 
Usually it causes a disturbance which disappears resulting in a surface wave - see 
figure 12 (b ) .  Sometimes the amplitude of the wave is very small and it is not visible 
in the numerical experiment (figures 10 and 13a). 

A slight dimpling is observed in computations for d < 0.0875. When € increases, 
the dimple exhibits a tendency to increase in amplitude and to occur further from the 
wall. 

Many experimental and theoretical studies exist which treat the film-drainage and 
rupture problems (see Hodgson & Woods 1969; Burrill & Woods 1973; Jones & 
Wilson 1978). Chi & Leal (1989) classify film drainage into three general modes. In  
the first the film is thinnest a t  r = 0 and monotonically increases as r increases (so- 
called ‘rapid’ drainage). I n  the second the film thickness is considered as almost 
uniform. In  the last case ‘dimpled ’ drainage occurs, in which the film is thinnest a t  
a rim of finite radius, rather than a t  r = 0. Film-drainage theories with zero 
tangential stress at the free boundaries predict minimum film thickness a t  the 
symmetry axis, while the theories with no-slip conditions predict ‘dimpled ’ drainage. 
I n  the cases considered in this paper one of the film boundaries is immobile and the 
other is free. In almost all of our experiments the initial film profile is of the ‘dimpled ’ 
type. Thus, the immobilization of even one of the film boundaries could cause the 
‘dimpled ’ drainage configuration. Geller et al. (1986) draw the same conclusions when 
investigating the motion of a rigid sphere towards a deformable fluid-fluid interface 
at  low Reynolds numbers. As one can see below, an additional factor exists which 
influences the dimpling formation - the inertia of the fluid particle. This factor is not 
included in the available theoretical studies. 

In order to  reveal the influence of the container wall we repeat the above 
experiments but with e = 3. The general tendencies remain the same as in the above 
case e = 00. No dimpling is observed for € = 7.2 and 18. The thickness of the 
spherical thin liquid layer is almost constant. For the case 8 = 18 an indentation in 
the rear part is observed for t = 1.5, and after that it disappears. The length rf of the 
spherical thin liquid layer increases and its thickness in the middle becomes greater 
than that in the rims rp = 0.5625, d = 0.0875, t = 2.9. 

In figure 13 (a )  the third numerical experiment from this series is depicted. A slight 
dimpling ring is observed at the film surface for r = +_0.3125. This is a zone where the 
curvature of the interface twice changes its sign. That also could be considered as an 
analogue of the ‘classical7 dimpling phenomenon in the case of a film between the 
bubble and spherical container. This phenomenon does not grow but fades away with 
time. A clear pattern of a toroidal dimpling is observed for large Eotvos number - 
see figure 13 ( b )  - i.e. a dimple-ring is formed in the front part of the bubble not far 
from the rim. The effect is connected with the curvature of the wall and is due to the 
additional hydrostatic pressure gradient in the draining film because in this case the 
hydrostatic pressure grows in the radial direction and as a result the pressure 
maximum is moved from the central zone to the film edge. It is clearly observed in 
the numerical experiment that the velocity in the dimpling zone remains 
comparatively small with respect to the velocity near the front stagnation point. A 
similar effect was observed experimentally by Hartland (1968) for a spherical film on 
a rigid sphere. 

Summing up our numerical results for the case of a curved wall, the film thickness 
will be greater a t  the line of symmetry than at the rim, which could be considered 
as a ‘ dimpling ’ drainage configuration in the case of a curved wall. The film drainage 
will again be slow. This phenomenon is not seen in figure 15 because the computations 
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FIGURE 13. Gas bubble approaching the wall of a spherical container for y = 0.75, e = 3 :  
(a )  9 = 120, 8 = 36; ( b )  9 = 1, B = 360. 

are stopped at an early stage of the process but is clear in figure 13. Hence the 
presence of a curved rigid wall leads again to ‘dimpling’ drainage, as could be 
expected. 

The phenomenon of ring dimpling is more special and occurs only for large 
curvature of the wall and deformability of the interface. 

As expected the deformations h and w are more significant for larger Eotvos 
number. The tendency of the average deformation to grow with an increase of d and 
e is evident from figure 14. 

In  order to  investigate the influence of the Reynolds number, numerical 
experiments are performed with fixed 8 = 18. The first one for W = 10 is shown on 
figure 12 (b ) .  The dimpling is not very well shown but the bubble has not yet achieved 
its ‘terminal’ shape. For 98 = 20 the inertial effects (the concavity in the rear part 
and the receding of the ends of the film area from the wall) increases (not shown in 
the figures). Deformations become larger, but the length of the thin liquid layer zone 
does not change essentially. A clear dimpling is formed at the axis of symmetry 
which increases when the Reynolds number increases. This confirms the important 
role of the inertia of the particle in the dimple formation. These tendencies develop 
for 9 = 40 and can be clearly observed in figure 15(c). 

It is interesting to point out that for the case of a bubble in a container the general 
tendency remains the same as in the previous case e = OC) (see figure Ma, b) .  The 
general rule that  the bubble velocity in the container is smaller than near the plate 
again holds. 

Taking the aspect ratio w l h  as the sole measure for the deformation of the bubble 
it is interesting to  investigate the dependence of this quantity on Reynolds number. 
The comparison between the aspect ratios obtained with different Reynolds numbers 
is depicted in figure 16. The deformation increases with W only for intermediate times 
and decreases for small ones. The non-monotonic behaviour of w l h  as a function of 
W is an interesting feature of the results obtained. The explanation seems to be the 
following. From (2.5) is clear that  for a given reference velocity large Reynolds 
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FIGURE 14. Comparisons of the average deformation wlh  for fixed Reynolds number (9 = 10) and 
different Eotvos numbers (8 = 7.2, 18, 36), the higher line corresponds to larger I ,  -, e = 00 ; 

. e =  3. _ _ _ _  

numbers correspond to small driving forces. Hence it is natural to expect that for 
small times the bubble velocity decreases with the growth of B, as observed in the 
numerical experiments depicted in figure 16. 

It is interesting to mention here that for B = 20 and e = 3 the bubble aspect ratio 
is greater than for e = 00, which is an exception from the above-stated general rule. 
This is due to non-monotonic behaviour of w and is discussed in the end of this 
section. 

The velocity of the bubble is a quantity that changes considerably with time for 
both problems under consideration. It rises from zero and then decays to nearly zero 
at the end of the simulation. Its maximum occurs for intermediate times when as a 
rule the reference velocity is attained. Hence the instantaneous Reynolds number 
V,,,(t)W differs from W, i.e. the standard Reynolds number does not characterize 
completely the hydrodynamics a t  each time moment. 

The significant changes in bubble velocity seems to be the reason why the Weber 
number is not always a convenient parameter for describing the deformability of 
interface. If we use W and W as governing parameters the bubble deformations do 
not increase with the increase of W even for large times. The aspect ratio hlw is larger 
for W = 40, 9 = 20 than for W = 40, 9 = 40. Perhaps one might expect that  W 
could have been a better choice for a governing parameter provided that another 
reference velocity is introduced, but it seems to us that this will not be the case. 

I n  figure 17 (a)  bubble quasi-terminal shapes are depicted for different initial 
distances from the wall. The velocity at the moments under consideration is in the 
range of lop3 (the bubble is moving very slowly) which allows us to assume that these 
are indeed the quasi-terminal shapes. At that  time stage only the development of the 
dimpling a t  the front part is in progress. 

It is observed in figure 17 ( b )  that  regardless of the value of starting distance the 
deformation characteristics w and h reach the same terminal values and after that 
remain nearly constant for large times. For small times the deformations exhibit 
more conspicuous dependence on the starting distance and are smaller for larger 
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FIQURE 15. Gas bubble approaching a rigid wall for fixed 8 = 18 and different Reynolds 
numbers: (a) W = 20, e = 3;  ( b )  W = 40, e = 3 ;  (c) W = 40, e = co. 
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FIQURE 16. Comparison of the average deformation w/h for fixed 8 = 18 and different B. 

starting distances owing to  the weaker hydrodynamical interaction with the wall. 
Conversely, the greatest dimpling takes place for the starting distance y = 1 (see 
figure 17a). Its  depth is approximately 0.055, which is about 50% of the thickness 
of the bubble in the central zone. Dimpling is not observed a t  all for y d 0.55, which 
supports the hypothesis that the dimpling phenomenon is connected with the specific 
value of the bubble velocity when the film is formed - see figure 17 (c ) .  The pressure 
maximum is now located near the centre of the dimpling zone where the velocity 
remains steadily lower than a t  the point where the film thickness is smallest - see 
figure 17(d). 

The influence of the dimensionless container radius is also studied. As expected, 
the bubble height h decreases with decreasing e ,  see figure 18. It is clear that the 
presence ofa  spherical container wall opposes the ‘flattening’ of the bubble. But the 
behaviour of the dimensionless width w is non-monotonic. The greatest deformations 
in the radial direction occur for intermediate values of the wall curvature - see also 
figure 16. The explanation is that the front part of the interface follows the wall 
shape. For intermediate values of e a part of driving force is transformed through the 
hydrodynamical interaction with the wall to pull the rim zone in the radial direction. 
But this singularity is observed only for comparatively large Eotvos numbers. 

It would be interesting to summarize and categorize the results in a chart similar 
to Bhaga & Weber (1981). But our problem depends on more parameters (on 92, 8, 
y ,  e and t instead of 9 and 8) and we would need many experiments to do this really 
well. On the other hand it seems natural to think first about such a classification in 
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FIQURE 17. Comparison for different starting distances y = 1 (---), y = 0.75 (-) and y = 0.55 
(-.-.-)at 9 = 22.2, I = 80: (a) bubble terminal shapes; (b )  bubble height h and width w; (c) bubble 
velocity u(C); (d )  the velocity at r = 0 and r = 1.3. 
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FIQURE 18. Comparison of w and h for different diameters of the container e = 2 (---), e = 3 (-) 
and e = 00 (-.-.-) at 9 = 22.2 and d = 80. 

1 
0 

the case of the unsteady motion of a bubble in unbounded liquid, i.e. for y = 00 and 
e =  co. 

5.3. Bubble receding from a rigid wall 
The receding of the bubble from a rigid wall is a physical problem which differs from 
the one above considered. No films are formed and the influence of the wall is 
considerable only for relatively small time and small starting distances. In  figure 19 
the solution of problem (ii) is depicted for small starting distance, Reynolds and 
Eotvos numbers. The interface deformability is low and the viscous forces are large. 
The temporal evolution of the process is very slow. Considerable elongation of the 
bubble takes place near the wall. Again a lubrication layer is formed between the 
bubble rear and the rigid wall and it plays an important role in the process. The 
viscous force evidently dominates the gravitational one in this layer. 

When the bubble reaches the central zone of the container i t  adopts a nearly 
spherical form again. This effect is due to the influence of the opposite wall and 
confirms the hypothesis stated by Brunn & Roden (1985). 

The case of relatively large Reynolds number and intermediate Eotvos one is 
depicted in figure 20. For t < 1.5 the elongation effect is present but it is to a certain 
degree weaker than in the previous case. Clearly its amplitude diminishes with the 
growth of the Reynolds number. However, we could not say that this effect is absent 
in the inviscid case. Something similar was observed by Blake et al. (1986) (see their 
figure 5 )  in the rather different problem of a cavitation bubble collapsing near a wall 
in an ideal flow for large buoyancy influence and moderate time. 

When the elongation of the bubble become sufficiently large the surface tension 
acts to round the bubble and after that the inertia forces come into play to preserve 
the somewhat higher speed of the liquid in the vicinity of the rear end, thus forming 
the concave shape in the rear part of the bubble. So the initial disturbance 
(elongation) cause an oscillation of the rear which develops into a surface wave. This 
wave is fading away in all numerical experiments. Perhaps if the initial disturbance 
were sufficiently great it could encompass the bubble and even lose stability. This 
effect is not observed for low Reynolds numbers. 

In figure 2 0 ( b )  the process development is shown for W = 120 and d = 12. The 
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FIGURE 19. Bubble receding away from a rigid wall at 9 = 0.2, 8 = 1, y = 0.55, e = 3. 

tendencies mentioned for e = 00 are observed here as well. The elongation of the rear 
end is now greater owing to the increase of the influence of the wall, and the 
concavity becomes even larger. Like the situation with the overall deformations, the 
magnitude of the depth for a given time is smaller for the case of spherical container 
than for the case of plane wall. This causes a wave with greater amplitude than in 
the case e = co. 

6. Conclusions 
The hydrodynamic behaviour of a bubble in the vicinity of a rigid plane wall is 

studied as well as the interaction of a bubble with the wall of a spherical container. 
The investigations are also applicable for drops if the viscosity of the liquid and 
pressure change in the drop are negligible. 

A parametric investigation of these problems is done. The set of parameters 
includes the Reynolds number, the Eotvos number, the non-dimensional starting 
distance y and the non-dimensional radius of the container e .  The deformation 
increases when W,& and e increase. Disappearance of the influence of y for large time 
is observed. 

Quantitative data for the occurrence and time development of the dimpling in the 
approaching case are obtained. We have computed bubble shapes up to quite large 
times. The velocities are rather small then, so the particle motion nearly stops with 
respect to the reference length. I n  this situation the bubble shape is nearly stable, as 
is the dimple. The behaviour of the shape of this dimple seems to be interesting in 
connection with film-thinning theory. The dimple depth increases with the growth of 
the Reynolds and Eotvos numbers, as well as of the starting distance. Its width 
grows with the increase of the Eotvos number. 
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FIGURE 20. Bubble receding away from a rigid wall at 9 = 120, d = 12, y = 0.55: 
(a) problem (i) ; (a) problem (ii). 

Toroidal dimpling is observed when the bubble moves in a spherical container, a 
phenomenon not noticed by other authors. 

The inertial effect concerning the appearance of a concavity in the rear part of the 
bubble is also observed. Its size increases when the Reynolds or the Eotvos number 
or the starting distance increases. This concavity is caused by the inertial forces in 
the liquid a t  the particle rear so this behaviour is to be expected. Perhaps if the 
inertia is great enough, it could disintegrate the bubble. If not, this disturbance 
disappears after a time and causes a surface wave a t  the interface. However, its 
amplitude is often small and this surface wave is not visible. 

The receding of a bubble from a wall is considered, too. At first elongation of the 
bubble is observed. I ts  magnitude is connected with the value of the viscous forces 
in the gap between the particle and the wall. A lubrication layer is formed there, 
which plays an important role in determining the bubble shape. This elongation 
becomes larger with the growth of Eotvos number or the wall curvature and with the 
diminishing of the Reynolds number or the starting distance. Unfortunately we 
cannot be sure that this effect exists in the inviscid case : we can say only that if this 
were the case, the amplitude of the elongation will be smaller. When the particle has 
receded from the wall, the surface-tension forces begin to dominate the viscous ones 
at  the bubble rear and this part of the interface begins to move to its equilibrium 
position. This causes a capillary wave on the surface of the bubble. If the damping 
influence of the viscous forces is not too great then i t  causes a concavity a t  the bubble 
rear, which fades away after a time. 

A numerical method, and the package NEFIS based on i t ,  for solving transient 
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problems of incompressible, viscous liquids are proposed. The numerical procedure 
belongs to the class of finite-element methods and is intended to solve the 
NavierStokes equations with gas-liquid or liquid-liquid boundaries. Test examples 
and comparisons with theoretical and experimental works of other authors are done, 
in the commonly used range of the governing parameters. They confirm the 
exactness of the results obtained. 

Numerical experiments show that the method can predict complicated nonlinear 
effects such as dimple formation, concavity in the rear part of the bubble, capillary 
waves and so on. 

Finally, the proposed method appears to be a useful tool for solving variety of 
similar problems with boundaries : of solid, gas-liquid or liquid-liquid type. The 
method can be also easily extended to  treat liquid-liquid interfaces in the general 
case. 

The authors are indebted to Professor R. Lazarov and Professor Ch. Christov for 
useful discussions as well as to the referees of the paper for their helpful comments. 
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